RECEIVED

JAMES B. HATFIELD, PE BENJAMIN F. DAWSON III, PE THOMAS M. ECKELS, PE

PAUL W. LEONARD, PE L.S. CHRISTIANE ENSLOW STEPHEN S. LOCKWOOD, PE

HATFIELD & DOWN (206) 783-9151
CONSULTING ELECTRICAL ENGINEERS

OFFICE OF STATE OF S

MAURY L. HATFIELD, PE CONSULTANT Box 1326 ALICE SPRINGS, NT 5950 Australia

Before the FEDERAL COMMUNICATIONS COMMISSION Washington, DC 20554

In the Matter of)	
Amendment of Parts 73 of the)	
Commission's Rules to More)	
Effectively Resolve Broadcast)	MM Docket No. 96-62
Blanketing Interference,	
Including Interference to)	
Consumer Electronics and Other)	
Communications Devices)	DOCKET FILE COPY ORIGINAL

Reply Comments of Hatfield & Dawson Consulting Engineers, Inc.

We support the Comments of the Association of Federal Communications Consulting Engineers (AFCCE) with the following additional considerations:

§73.1630 Blanketing interference.

(a) Calculation of the Blanketing Interference Contour for AM stations.

This proposed amendment to the Rules stipulates the use of the Cosine Law for calculation of the distance to the 1 Volt per meter AM blanketing contour. While this technique accurately accounts for the fact that the path lengths from the radiators to the point on the contour may not be parallel lines other techniques may provide a more complete depiction of the near field environment.

Computation of the electric and magnetic fields near an antenna can be made using moment method computer programs. Such computations show, for example, that the location of the AM

> No. of Copies rec'd_ List ABCDE

blanketing contour as measured by field intensity meters commonly used for AM antenna field measurements can be substantially in error.

The basic reason for this is that the field indicated by the meter face, in electric field units, is derived from the magnetic field component of the far field radiation of the antenna. In the near field the relationship between the magnetic and electric field components of electromagnetic radiation are not the same as they are in the far field where there is a plane wave and the electric to magnetic field ratio is 377. This can lead to errors in measurement when these meters are used. We calculated the near magnetic and electric fields for a specific three tower array and found measurement errors of 150% in the vicinity of the 1 Volt per meter AM blanketing contour (See Appendix for example.).

For this reason more sophisticated computational techniques should be allowed for determining the AM blanketing contour. Properly made electric field measurements should also be allowed for the determination of the AM blanketing contour since similar measurements are allowed by the Commission for the determination of NIER exposure.

(b) Calculation of the Blanketing Interference Contour for FM and TV Stations.

We wish to emphasize our support for the AFCCE comments regarding the blanketing contour computations for TV stations. Any realistic blanketing contour computations must be based upon the average RMS ERP of the TV station and the vertical pattern of the transmitting antenna.

Respectfully submitted.

Hatfield & Dawson Consulting Engineers, Inc.

Benjamin 7. Dawson III, P

President/

ames B. Hatfield, P.E

Secretary

APPENDIX

TO

HATFIELD & DAWSON

REPLY COMMENTS

ON BLANKETING CONTOUR

RULEMAKING

THREE TOWER EXAMPLE

SHOWING NEAR FIELD MEASUREMENT PROBLEMS

Hatfield & Dawson Consulting Engineers

C:\MBPRO\BLANKET 06-13-1996 12:59:49

NEAR FIELD BLANKETING CONTOUR WITH PROXIMITY EFFECT

GEOMETRY

Wire coordinates in degrees; other dimensions in meters Environment: PERFECT GROUND

Mile	caps	Distance	Angle	Z	radius	segs
1	none	Q	0	Ç	. 2	60
		0	0	90.		
2	none	90.	0	٥	. 2	60
		90.	0	90.		
3	none	180.	٥	0	. 2	60
		180.	0	90.		

Number of wires = 3 current nodes = 180

	mini	mum .	maximum	
Individual wires	wire	value	wire	value
segment length	1	1.5	1	1.5
radius	1	. 2	1	. 2

ELECTRICAL DESCRIPTION

Frequencies (KHz)

	frequency		no. of	segment length	(wavelengths)
no.	lowest	step	steps	minimum	meximum
1	1000.	0	1	.004166667	.004166667

Sources

BOUTCE	node	sector	magnitude	phase	type
1	1	1	2266.393	48.27	voltage
2	61	1	1055.963	122.63	voltage
3	121	1	321.1064	170.52	voltage

C:\MBPRO\BLANKET 06-13-1996 12:59:50

IMPEDANCE

frequency (KHz)	resistance (ohms)	reactance (ohms)	impedance (ohms)	phase (deg)	VSWR
source = 1000.	1 101.5033	82.61226	130.8729	39.14	3.59
source =	2 42.23728	22.79151	47. 9 9400	28.36	1.68
source = 1000.	3 15.50469	-3.094542	15.91049	348.71	3.24

C:\MBPRO\BLANKET 06-13-1996 12:59:51 CURRENT - RMS

Frequency = 1000 KHz
Input power = 50000. watts

```
CA US *
 KXXX ANYTOWN
                                                  DATE 061396
  1000 KHZ FILE DATE 042188
                                     MULTITECH
                                                                            N LAT 34 23 19 W LONG 117 23 29
                                       FILE NO. 1234
                                                              CLASS
BLANKETING COV
$1 GNALS: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
                                    0 6
           2 6 6 6 6
                                   SCHEDULE: U CODE: N TIME OF OPERATION: N
CURVES REQUESTED: 2 MODE: DAZ SCHEDULE: U CODE: N TIME OF OF NIGHT: POWER: 50.00 KW 3 TOWERS RADIATION = .00 MV/M AT
                                                                                                                          .DO MV/M
                                                                        .00 DEGREES TRUE
                                                                                              RMS:
                                                                                                        .DO MV/M D:
                                                              REFERENCE AZIMUTH IS .00
                                               STATUS:
         C AUGMENTATION(8)
                                    DATE:
INPUT PARAMETERS:
                                           TOW REF
                                                                  LOA
                                                                              ADJ
   FIELD
                                                                                      TL/SEC
                                                                                                                Ç
                                                                                                                         D
                                                                                                                              Z SUB
                                                                            ORIENT
                                                                                                A
             PHASING
                        SPACING
                                  ORIENT
                                           SWITCH
                                                     HEIGHT
                                                                SPACING
   RATIO
                                                                  ,000
                                                                                       ٥
                                                                                               .00
                                                                                                        .00
                                                                                                                .00
                                                                                                                        .00
                                                                                                                                .00
                                                                              .000
                 .000
                           .000
                                    .000
                                                      90.0
    1.0000
                                                                                               .00
                                                                                                       .00
                                                                                                                .00
                                                                                                                        .00
                                                                                                                                .00
                                    .000
                                                                90.000
                                                                              .000
                                                                                       â
             -270:000 90.000
                                             đ
                                                      90.0
    2.0000
                                                                                                                        .00
                                                                                                                                 .00
                                                                                                        .00
                                                                                                                .00
                                                               160.000
                                                                              .000
                                                                                       ٥
                                                                                                .00
                                                      90.0
    1.0000
             180.000
                        180,000
                                    .000
                                             Û
                                     F OF THETA FOR TOWERS
  ELEV
            1
           1.0000
    .0
  5.0
            .9944
             .9779
  10.0
             .9509
  15.0
  20.0
             .9143
             .8691
  25.0
             .8165
  30.0
             .7579
  35.0
            .6946
  40.0
  45.0
             .5589
  50.0
  55.0
             .4886
             .4178
  40.0
  45.0
             .3470
             .2766
  70.0
  75.0
             .2067
             , 1374
  80.0
  85.0
             .0686
                                                          SPACINGS
          TOWERS
                      .0000
                              90.0000
                                        160.0000
                                         90.0000
                                .0000
                    90,0000
                               90,0000
                                           .0000
             3
                   180.0000
ELEV RMS (SMALL)
        2.5707
  .0
  2.0
         2.5682
         2.5607
  4.0
         2.5482
  6.0
         2.5308
  8.0
 10.0
         2.5085
         2,4815
 12.0
         2.4498
 14.0
 16.0
         2.4137
```

18.0 2.3732 20.0 2,3285 2.2799 22.0 24.0 2.2275 26.0 2.1715 28.0 2.1122 30.0 2.0499 1,9847 32.0 1.9171 34.0 36.0 1.8472 1.7753 38.0 40.0 1.7018 1.6269 42.0 1.5509 44.0 1.4742 46.0 48.0 1.3970

Hatfield & Dawson Consulting Engineers

J

